14 October 2019

Photonic Computing paving the way to a "pervasive intelligence"


One of the most demanded tasks of AI is extracting patterns and features directly from collected big data. Among the various most promising approaches for accomplishing this goal, Deep Neural Networks (DNNs) are outperforming. 

The reason of the DNNs are so performing is not fully explained yet, but one possible explanation, widely elaborated in literature, is that being DNNs based on an iterative coarse-graining scheme, their functioning is somehow rooted to fundamental theoretical physics tool (e.g., Renormalization Group). 

The reverse side of the coin is that this is rather resource consuming and, as such, energy demanding. In fact, today DNNs (as other AI models) still rely on Boolean algebra transistors to do an enormous amount of computations over huge data sets. This has two major consequences: on one side chips and processors technologies aren’t getting faster at the same pace that AI methods and systems are progressing, and, on the other hand, current AI technologies are becoming more and more electricity-hungry. 

Today, for example, Cloud servers and data centers currently account for around 2% of power consumption in the U.S. According to some forecasts, data centers will consume one fifth of the world’s electricity by 2025. 

Will this energy consuming trend be really sustainable in long term scenarios (e.g., 6G) ?

Take a look at this paper - Lovén, Lauri, et al. "EdgeAI: A Vision for Distributed, Edge-native Artificial Intelligence in Future 6G Networks." The 1st 6G Wireless Summit (2019): 1-2.

We remind that in a DNN that each high-level layer learns increasingly abstract higher-level features, providing a useful, and at times reduced, representation of the features to a lower-level layer. This similarity, more specifically, is suggesting the intriguing possibility that DNNs principles are deeply rooted in quantum electromagnetics. This is offering a way to bypass above roadblocks: developing AI technologies based on photonic/optical computing systems which are faster and much less energy-hungry that current ones. 

Indeed, low-latency and low-energy neural network computations can be a game changer for a pervasive AI. In this direction, fully optical neural network could offer enhancements in computational speed and reduced power consumptions.

My last paper on these topics available at the following link:
https://www.mdpi.com/2624-960X/1/1/11