21 November 2017

Why Omics is a "pivotal" use-case for 5G ?

The term omics informally refers to a number of avenues in biology ending in -omics, such as genomicsproteomics or metabolomics.

Let’s focus for a while on genomics. The advances in sequencing technologies is progressively reducing the cost of sequencing a human genome to the order of 1000 $. This is likely to have a big impact on a lot of applicative and societal fields (biology, precision medicine, food industry, etc) which are making use of the massive data and information stored in DNA sequences. 

It is expected that genomics will be more demanding (in terms of processing, storage and networking services) than the three main big data domains, namely astronomy, YouTube and Twitter. At the same time networks and service platforms are going to face a systemic techno-economic transformation (called Softwarization, enabled by SDN-NFV technologies advances): networks and service platforms will evolve to become end-to-end software framwork (integrating processing, storage and networking) supported by hyper-connected links (both fixed and mobile); this will mean more and more flexibility, programmability (with multi-levels APIs) to satisfy - on demand - the new dynamical needs/requirements of big data applications areas such as genomics.



Thus, today is the perfect time to cross the 5G (which is much more than the evolution of the mobile 4G) and genomics communities for demonstrating how SDN-NFV/5G can help enabling a true genomic (and omics) revolution.

New ecosystems and collaborations have to be created between universities, pharmaceutical companies, sequencing machines manufacturers, medicine and biology research centers, hospitals, and services providers/network operators. The changing point is that genomics ecosystem will require in fact not only ultra-broadband connectivity, but also the flexibility of creating and orchestrating on-demand infrastructure slices of resources for processing and storage services of big volumes of data.  

For large public facilities, such as hospitals or research centers, 5G technologies will improve the capability of massive analysis, providing automatic and scalable processing services in 5G networks, relieving them from the burden to manage dedicated computing facilities. The usage of SDN-NFV/5G will allow setting up dedicated virtual networks hooking also logical processing and storage resources where to execute Machine Learning services for big data analysis.   



In summary, gen(-omics) in general is a pivotal use case for 5G, not only for ultra-broadband fixed-mobile connectivity, but also and perhaps especially for aspects of programmability of both application and network services (through APIs), security and privacy management, low cost SDN-NFV integrated solutions for the Omics ecosystems.